Question: Q: Chapter Chapter 11 of Mertler and Vannata; answer exercises on pages 306 and 307: This exercise utilizes the SPSS data setprofile-e.sav, which can be downloaded from this Web site: www.Pvrczak.com/data Conduct a Forward: LR logistic regression analysis with the following variables: IV—age, educ, hrsl, sibs, rincom91, life2 (categorical) DV—satjob2 Note: The variable Iife2 is categorical such that dull = 1, routine/exciting = 2, and all other values are sys­tem missing. Develop a research question for the following scenario. Conduct a preliminary Linear Regression to identify outliers and evaluate multicollinearity among the five continuous variables . Complete the following: a. Using the Chi-Square table in Appendix B, identify the critical value atp< .001 for iden­tifying outliers. Use Explore to determine if there are outliers. Which cases should be eliminated? b. Is multicollinearity a problem among the five continuous variables? Conduct Binary Logistic Regression using the Forward: LR method. IV—age, educ, hrsl, sibs, rincom91, life2 (categorical; last is the reference category) DV—satjob2 Note: Make sure that any outliers identified in Exercise 2a are removed from data before running the lo­gistic regression. Also, designating life2 as a categorical covariate with the last category as the reference, essentially makes "routine/exciting" = 0 and "dull" = 1, so interpret the results accordingly. a. Which variables were entered into the model? b. To what degree does the model fit the data? Explain. c. Is the generated model significantly different from the constant-only model? d. How accurate is the model in predicting job satisfaction? e. What are the odds ratios for the model variables? Explain. Module 14 – Multi-level linear analyses: When do you use multi-level linear analyzes? Chapter 8 of Cronk (chapter below I wasn’t sure what was being asked) and answer all practice exercises; post your results here:

Question:
Q:  Chapter Chapter 11 of Mertler and Vannata; answer exercises on pages 306 and 307: This exercise utilizes the SPSS data setprofile-e.sav, which can be downloaded from this Web site: www.Pvrczak.com/data Conduct a Forward: LR logistic regression analysis with the following variables: IV—age, educ, hrsl, sibs, rincom91, life2 (categorical) DV—satjob2 Note: The variable Iife2 is categorical such that dull = 1, routine/exciting = 2, and all other values are sys­tem missing. Develop a research question for the following scenario. Conduct a preliminary Linear Regression to identify outliers and evaluate multicollinearity among the five continuous variables . Complete the following: a. Using the Chi-Square table in Appendix B, identify the critical value atp< .001 for iden­tifying outliers. Use Explore to determine if there are outliers. Which cases should be eliminated? b. Is multicollinearity a problem among the five continuous variables? Conduct Binary Logistic Regression using the Forward: LR method. IV—age, educ, hrsl, sibs, rincom91, life2 (categorical; last is the reference category) DV—satjob2 Note: Make sure that any outliers identified in Exercise 2a are removed from data before running the lo­gistic regression. Also, designating life2 as a categorical covariate with the last category as the reference, essentially makes “routine/exciting” = 0 and “dull” = 1, so interpret the results accordingly. a. Which variables were entered into the model? b. To what degree does the model fit the data? Explain. c. Is the generated model significantly different from the constant-only model? d. How accurate is the model in predicting job satisfaction? e. What are the odds ratios for the model variables? Explain. Module 14 – Multi-level linear analyses: When do you use multi-level linear analyzes? Chapter 8 of Cronk (chapter below I wasn’t sure what was being asked) and answer all practice exercises; post your results here:

Order a unique copy of this paper
(550 words)

Approximate price: $22

Basic features
  • Free title page and bibliography
  • Unlimited revisions
  • Plagiarism-free guarantee
  • Money-back guarantee
  • 24/7 support
On-demand options
  • Writer’s samples
  • Part-by-part delivery
  • Overnight delivery
  • Copies of used sources
  • Expert Proofreading
Paper format
  • 275 words per page
  • 12 pt Arial/Times New Roman
  • Double line spacing
  • Any citation style (APA, MLA, Chicago/Turabian, Harvard)

Our guarantees

Delivering a high-quality product at a reasonable price is not enough anymore.
That’s why we have developed 5 beneficial guarantees that will make your experience with our service enjoyable, easy, and safe.

Money-back guarantee

You have to be 100% sure of the quality of your product to give a money-back guarantee. This describes us perfectly. Make sure that this guarantee is totally transparent.

Read more

Zero-plagiarism guarantee

Each paper is composed from scratch, according to your instructions. It is then checked by our plagiarism-detection software. There is no gap where plagiarism could squeeze in.

Read more

Free-revision policy

Thanks to our free revisions, there is no way for you to be unsatisfied. We will work on your paper until you are completely happy with the result.

Read more

Privacy policy

Your email is safe, as we store it according to international data protection rules. Your bank details are secure, as we use only reliable payment systems.

Read more

Fair-cooperation guarantee

By sending us your money, you buy the service we provide. Check out our terms and conditions if you prefer business talks to be laid out in official language.

Read more

Calculate the price of your order

550 words
We'll send you the first draft for approval by September 11, 2018 at 10:52 AM
Total price:
$26
The price is based on these factors:
Academic level
Number of pages
Urgency

Order your essay today and save 10% with the discount code tCPCOVID10